Page 57 - 《精细化工》2023年第5期
P. 57

第 5 期                 罗燕萍,等:  金属-有机框架材料在硅氢加成反应中的应用研究进展                                   ·977·


            [27]  XIE Z K (谢志凯), CHEN X Y (陈秀莹), HU W B (胡文斌), et al.   CO 2 uptake on functionalized calcium based MOFs and metallogels
                 Function metal-organic framework supported platinum highly   [J]. Journal of Materials Chemistry, 2012, 22(30): 14951-14963.
                 efficicient  catalytic  hydrosilylation[J]. Journal of Molecular Catalysis   [44]  PLATERO-PRATS A E, IGLESIAS M, SNEJKO N,  et al. From
                 (分子催化), 2018, 32(6): 520-529.                     coordinatively weak ability of constituents to very stable alkaline-
            [28]  XIE Z, CHEN W, CHEN X, et al. Platinum on 2-aminoethanethiol   earth sulfonate metal-organic frameworks[J]. Crystal  Growth &
                 functionalized MIL-101 as a catalyst  for alkene hydrosilylation[J].   Design, 2011, 11(5): 1750-1758.
                 RSC Advances, 2019, 9(35): 20314-20322.       [45]  NEWAR R, AKHTAR N, ANTIL N, et al. Amino acid-functionalized
            [29]  WEN J, CHEN Y, JI S,  et al. Metal-organic frameworks-derived   metal-organic frameworks for asymmetric base-metal catalysis[J].
                 nitrogen-doped carbon supported nanostructured PtNi catalyst for   Angewandte Chemie International Edition, 2021, 60(19): 10964-
                 enhanced hydrosilylation of 1-octene[J]. Nano Research, 2019,   10970.
                 12(10): 2584-2588.                            [46]  ANTIL N, AKHTAR N, NEWAR R, et al. Chiral iron(Ⅱ)-catalysts
            [30]  ZHANG Z, BAI L, HU X. Alkene hydrosilylation catalyzed by easily   within valinol-grafted meta-organic frameworks for enantioselective
                 assembled Ni(Ⅱ)-carboxylate MOFs[J]. Chemical Science, 2019,   reduction of ketones[J]. ACS Catalysis, 2021, 11(16): 10450-10459.
                 10(13): 3791-3795.                            [47]  BERKEFELD A, PIERS W E, PARVEZ M. Tandem frustrated Lewis
            [31]  WU T X, JIA J S, LUO W, et al. A robust heterogeneous Co-MOF   pair/tris(pentafluorophenyl)borane-catalyzed deoxygenative hydrosilylation
                 catalyst in azide-alkyne cycloaddition and Friedel-Crafts reactions as   of carbon dioxide[J]. Journal of  the  American Chemical Society,
                 well as hydrosilylation of alkynes[J]. New Journal  of  Chemistry,   2010, 132(31): 10660-10661.
                 2021, 45(2): 872-880.                         [48]  ASHLEY A E, THOMPSON A L, O'HARE D. Non-metal-mediated
            [32]  YU Z, SONG Z, LU C,  et al. The synthesis of heterogenous   homogeneous hydrogenation of CO 2 to CH 3OH[J]. Angewandte
                 Co-MOFs and application in the catalytic hydrosilylation of alkenes   Chemie International Edition, 2009, 48(52): 9839-9843.
                 [J]. Applied Organometallic Chemistry, 2022, 36(6): 6648-6657.   [49]  WANG T, XU M, JUPP A R,  et al. Selective catalytic frustrated
            [33]  CAO L, LIN Z, PENG F, et al. Self-supporting metal-organic layers   Lewis pair hydrogenation of CO 2 in the presence of silylhalides[J].
                 as single-site solid catalysts[J]. Angewandte Chemie International   Angewandte Chemie International Edition, 2021, 60(49): 25771-25775.
                 Edition, 2016, 55(16): 4962-4966.             [50]  BLANKSBY S J,  ELLISON G  B. Bond dissociation energies  of
            [34]  OJIMA I, NIHONYANAGI M, NAGAI Y. Rhodium complex   organic molecules[J]. Accounts of Chemical Research, 2003, 36(4):
                 catalysed hydrosilylation of carbonyl compounds[J]. Journal of the   255-263.
                 Chemical Society, Chemical Communications 1972, (16): 938a.   [51]  EISENSCHMID T C, EISENBERG R. The iridium complex
            [35]  CHAKRABORTY S, BHATTACHARYA P, DAI H, et al. Nickel and   catalyzed reduction of carbon dioxide to methoxide by alkylsilanes[J].
                 iron pincer complexes as catalysts for the reduction of carbonyl   Organometallics, 1989, 8(7): 1822-1824.
                 compounds[J]. Accounts of Chemical Research, 2015, 48(7): 1995-2003.   [52]  LEI Z, XUE Y,  CHEN  W,  et al. MOFs-based heterogeneous
            [36]  SAWANO T, LIN Z, BOURES D, et al. Metal-organic frameworks   catalysts: New opportunities for energy-related CO 2 conversion[J].
                 stabilize mono(phosphine)-metal complexes for broad-scope catalytic   Advanced Energy Materials, 2018, 8(32): 1801587-1801617.
                 reactions[J]. Journal of the American Chemical Society, 2016, 138(31):   [53]  LIU J, FAN Y  Z, ZHANG K,  et al. Engineering porphyrin
                 9783-9786.                                        metal-organic framework composites as  multifunctional platforms
            [37]  KASSIE A A, DUAN P, GRAY M B, et al. Synthesis and reactivity   for CO 2 adsorption and activation[J]. Journal of the  American
                                        N
                                       N
                 of Zr MOFs assembled from P N P-Ru pincer  complexes[J].   Chemical Society, 2020, 142(34): 14548-14556.
                 Organometallics, 2019, 38(18): 3419-3428.     [54]  CHEN C, MO Q, FU J,  et al. PtCu@Ir-PCN-222: Synergistic
            [38]  MANNA  K, ZHANG T, GREENE F  X,  et al. Bipyridine- and   catalysis of bimetallic PtCu nanowires in hydrosilane-concentrated
                 phenanthroline-based metal-organic frameworks for highly efficient   interspaces of an iridium( Ⅲ )-porphyrin-based metal-organic
                 and tandem catalytic organic transformations  via directed  C—H   framework[J]. ACS Catalysis, 2022, 12(6): 3604-3614.
                 activation[J]. Journal of the American Chemical Society, 2015,   [55]  SHYSHKANOV S, NGUYEN T N, EBRAHIM F M, et al. In situ
                 137(7): 2665-2673.                                formation of frustrated Lewis pairs in a water-tolerant metal-organic
            [39]  BENNEDSEN N R, KRAMER S, MIELBY J J, et al. Cobalt-nickel   framework for the transformation of  CO 2[J]. Angewandte Chemie
                 alloy catalysts for hydrosilylation of ketones synthesized by utilizing   International Edition, 2019, 58(16): 5371-5375.
                 metal-organic framework as template[J]. Catalysis Science &   [56]  ZHANG X, SUN J,  WEI G,  et al.  In situ generation of an
                 Technology, 2018, 8(9): 2434-2440.                N-heterocyclic carbene functionalized  metal-organic framework by
            [40]  CHRISTENSEN D B, MORTENSEN R L, KRAMER S, et al. Study   postsynthetic ligand exchange: Efficient and selective hydrosilylation
                 of CoCu alloy nanoparticles supported on MOF-derived carbon for   of CO 2[J]. Angewandte Chemie International Edition, 2019, 58(9):
                 hydrosilylation of ketones[J]. Catalysis Letters, 2019, 150(6): 1537-   2844-2849.
                 1545.                                         [57]  ZHANG X, JIANG Y, FEI H.  UiO-type metal-organic frameworks
            [41]  ADDIS D, ZHOU S, DAS S, et al. Hydrosilylation of ketones: From   with NHC or metal-NHC functionalities for  N-methylation using
                 metal-organic frameworks to simple base catalysts[J]. Chemistry An   CO 2 as the  carbon source[J]. Chemical Communications, 2019,
                 Asian Journal, 2010, 5(11): 2341-2345.            55(79): 11928-11931.
            [42]  FENG X, JI P, LI Z, et al. Aluminum hydroxide secondary building   [58]  LI Z, LI H, YANG S. Carboxylate-functionalized zeolitic imidazolate
                 units in a metal-organic framework support earth-abundant metal   framework enables catalytic  N-formylation using ambient CO 2[J].
                 catalysts for broad-scope organic transformations[J]. ACS Catalysis,   Advanced Sustainable Systems, 2022, 6(3): 2100380-2100390.
                 2019, 9(4): 3327-3337.                        [59]  YE Z, CHEN J.  Sulfonate-grafted  metal-organic frameworks for
            [43]  MALLICK A, SCHOEN E M, PANDA T,  et al. Fine-tuning the   reductive  functionalization of CO 2 to  benzimidazoles and
                 balance between crystallization and  gelation and enhancement of   N-formamides[J]. ACS Catalysis, 2021, 11(22): 13983-13999.
   52   53   54   55   56   57   58   59   60   61   62