Page 182 - 《精细化工》2023年第8期
P. 182
·1796· 精细化工 FINE CHEMICALS 第 40 卷
S. aureus 活性逐渐减弱,所以Ⅱh>Ⅱj>Ⅱl;(4)结 5(10): 1540-1547.
[4] LIU S, LIU B W, LUO Z Q, et al. The combination of osthole with
构简化后的部分化合物的抗菌活性较蛇床子素大幅
baicalin protects mice from Staphylococcus aureus pneumonia[J].
提高。同时,与前期研究比较 [5-8] ,本文设计合成的 World Journal of Microbiology and Biotechnology, 2017, 33(1):
11-15.
肉桂酰胺衍生物Ⅱp 的抗 S. aureus 活性优于前期 7
[5] ZHOU X R (周绪容), YANG H (杨红), ZHENG J (郑洁), et al.
号位的醚类衍生物(最小 MIC 为 512 mg/L)、8 号 Synthesis and antibacterial activities of osthole amide derivatives[J]
Fine Chemicals (精细化工), 2021, 38(4): 790-794.
位的酯类衍生物(最小 MIC 为 16 mg/L)、酰胺类衍
[6] YANG J Q (杨家强), WU X J (吴学姣), ZHOU X R (周绪容), et al.
生物(最小 MIC 为 64 mg/L)、磺酰胺类衍生物(最 Synthesis and antibacterial activities of osthole ester derivatives[J].
Chinese Journal of Applied Chemistry (应用化学), 2021, 38(8):
小 MIC 为 32 mg/L);抗 MRSA 活性除与 8 号位的酯
917-922.
类衍生物(最小 MIC 为 16 mg/L)相当外,均优于其 [7] WU X J (吴学姣), YAN B Y (鄢伯钰), ZHOU X R (周绪容), et al.
他类化合物。表明在蛇床子素结构中,香豆素的内酯 Synthesis and antibacterial activities of osthole ether derivatives[J].
Chemical Research and Application (化学研究与应用), 2022, 34(7):
环可能不是抗菌的必须基团,但还需进一步验证。 1532-1537.
[8] YANG J Q (杨家强), ZHENG J (郑洁), AN J L (安家丽), et al.
3 结论 Synthesis and antibacterial activities of novel osthole sulfonate
derivatives[J]. Chinese Pharmaceutical Journal (中国药学杂志),
2022, 57(2): 102-108.
本文通过对蛇床子素开环,设计合成了肉桂酰 [9] OSCAR F D, RAMIRO A M, ANGGELA B R, et al.
胺系列衍生物,它们具有潜在的抗菌活性,部分化 N-alkylimidazolium salts functionalized with p-coumaric and
cinnamic acid: A study of their antimicrobial and antibiofilm
合物的抗菌活性优于蛇床子素及前期研究化合物, effects[J]. Molecules, 2019, 24(19): 3484.
其中化合物Ⅱh 对 S. aureus 和 MRSA 的 MIC 分别为 [10] SHERIF M M, ELKHATIB W F, KHALAF W S, et al. Multidrug
resistance Acinetobacter baumannii biofilms: Evaluation of
16 和 32 mg/L,Ⅱp 对 S. aureus 和 MRSA 的 MIC 分
phenotypic-genotypic association and susceptibility to cinnamic and
别为 8 和 16 mg/L,对革兰氏阳性菌活性更显著; gallic acids[J]. Frontiers in Microbiology, 2021, 12: 2583.
而中间体Ⅰ呈现出的潜在抗菌活性,值得后续结构 [11] LIANG Y, ZHANG L Y, LAI C L, et al. Evaluation of antibacterial
activity of compounds isolated from the peel of Newhall navel
衍生和优化,以获取对革兰氏阳性菌和阴性菌都有 orange[J]. Natural Product Research, 2022, 25: 1-5.
显著活性的广谱抗菌化合物。 [12] ABDELAZIZ N A, ELKHATIB W F, SHERIF M M, et al. In silico
docking, resistance modulation and biofilm gene expression in
multidrug-resistant Acinetobacter baumannii via cinnamic and gallic
参考文献:
acids[J]. Antibiotics. 2022, 11(7): 870.
[1] CHOKSHI A, SIFRI Z, CENNIMO D, et al. Global contributors to [13] SAYINER H S, YILMAZER M I, ABDELSALAM A T, et al.
antibiotic resistance[J]. Journal of Global Infectious Diseases, 2019, Synthesis and characterization of new 1,3,4-thiadiazole derivatives:
11(1): 36-42. Study of their antibacterial activity and CT-DNA binding[J]. RSC
[2] LEONARD A C, PETRIE L E, COX G. Bacterial anti-adhesives: Advances. 2022, 12(46): 29627-29639.
Inhibition of Staphylococcus aureus nasal colonization[J]. ACS [14] WANG W (王伟), YING J (应军), CHEN W Z (陈文展), et al.
Infectious Diseases, 2019, 5(10): 1668-1681. Preparation of trans-cinnamic acid derivatives as antitumor agents:
[3] JOSHI P, SINGH S, WANI A, et al. Osthol and curcumin as CN101541717B[P]. 2008-06-04.
inhibitors of human PGP and multidrug efflux pumps of [15] SHEN G X (沈关心). Microbiology and lmmunology[M]. Beijing:
staphylococcus aureus: Reversing the resistance against frontline People's Medical Publishing House (人民卫生出版社), 2007:
antibacterial drugs[J]. Medicinal Chemistry Communication, 2014, 326-328.
(上接第 1748 页) copper-based metal organic framework under ambient conditions[J].
Energy & Fuels, 2015, 29(1): 298-304.
[23] BAI Y, XIN Y, LIU J, et al. Construction of H 6PW 9V 3O 40@rht-MOF-1 [28] BIESINGER M C. Advanced analysis of copper X-ray photoelectron
for deep oxidative desulfurization of fuel oil[J]. Applied Organometallic spectra[J]. Surface and Interface Analysis, 2017, 49(13): 1325-1334.
Chemistry, 2022, 36(5): e6633. [29] GAO Y (高燕), YAN M (闫苗), ZHAO J S (赵建社). Preparation of
[24] CHEN B, OCKWIG N W, MILLWARD A R, et al. High H 2 MOF-199 supported peroxophosphotungstate catalyst and its
adsorption in a microporous metal-organic framework with open application in diesel desulfurization[J]. Acta Petrolei Sinica: Petroleum
metal sites[J]. Angewandte Chemie, 2015, 117: 4823-4827. Processing Section (石油学报: 石油加工), 2023, 39(2): 349-357.
[25] CHEN Y, LV D, WU J, et al. A new MOF-505@GO composite with [30] ZANG H B (臧瀚彬), LI M C (李莫尘), ZHANG T X (张铁欣),
high selectivity for CO 2/CH 4 and CO 2/N 2 separation[J]. Chemical et al. Cyclization of CO 2/CS 2 coupled with trifluoromethylation
Engineering Journal, 2017, 308: 1065-1072. catalyzed by single-site copper within HKUST-1[J]. Fine Chemicals
[26] SHI W, HAN X, BAI F, et al. Enhanced desulfurization performance (精细化工), 2020, 37(9): 1839-1846.
of polyethylene glycol membrane by incorporating metal organic [31] CHEN B, EDDAOUDI M, REINEKE T M, et al. Cu 2(ATC)•6H 2O:
framework MOF-505[J]. Separation and Purification Technology, Design of open metal sites in porous metal-organic crystals (ATC:
2021, 272: 118924. 1,3,5,7-adamantane tetracarboxylate)[J]. Journal of the American
[27] LI Y, WANG L J, FAN H L, et al. Removal of sulfur compounds by a Chemical Society, 2000, 122(46): 11559-11560.