Page 134 - 《精细化工》2023年第8期
P. 134

·1748·                            精细化工   FINE CHEMICALS                                 第 40 卷

            DBT(95.50%)>4,6-DMDBT(78.93%)>BT(66.88%) 。             et al. Advances in fluid catalytic cracking naphtha cleaning technology[J].
                                                                   Chemical Industry and Engineering  Progress (化工进展), 2019,
            4,6-DMDBT 脱硫率稍低可能是因为其 4,6-位上甲基                         38(1): 196-207.
            的空间位阻使硫原子难以接近催化剂的活性中心,                             [3]   YAO G X (姚国欣). Processing technologies for clean motor fuels
                                                                         st
                                                                   facing 21  century[J]. Petroleum Processing and Petrochemicals (石
            而 BT 脱硫率较低可能是因为其 S 原子上的电荷密                             油炼制与化工), 2000, 31(1): 1-5.
            度较小(BT、DBT 和 4,6-DMDBT 的 S 原子上的电                   [4]  ZHAO B  Y  (赵博艺), YANG C H (杨朝合), SHAN H H (山红红),
                                                                   et al. Effect of temperature and catalyst/oil  ratio  on gasoline
                                  12
                                              12
            荷密度分别为 6.205×10 、6.226×10 、6.228×10          12        desulfurization via catalytic cracking[J]. Chinese Journal of Catalysis
                  3
            A•s/m ),而且 BT 分子尺寸偏小(BT、DBT 和                          (催化学报), 2001, 22(6):595-597.
                                                               [5]   SRIVASTAVA V C. An evaluation of desulfurization technologies for
            4,6-DMDBT 的分子大小分别为 0.563 nm×0.743 nm、                  sulfur removal from liquid fuels[J]. RSC Advances, 2012, 2(3):
            0.607 nm×0.981 nm、0.626 nm×0.980 nm)   [7,17] ,不       759-783.
                                                               [6]  WANG Y  (王勇), SHEN H P (申海平), REN L (任磊), et al. Research
            利于其在 MOF-505 孔道中固定和催化反应。                               progress of the oxidation desulfurization mechanism for fuel oil[J].
                                                                   Chemical Industry and Engineering  Progress (化工进展), 2019,
                                                                   38(S1): 95-103.
                                                               [7]   PENG Y L, LIU J Y, ZHANG H F, et al. A size-matched POM@MOF
                                                                   composite catalyst for highly efficient and recyclable  ultra-deep
                                                                   oxidative fuel desulfurization[J]. Inorganic Chemistry Frontiers,
                                                                   2018, 5: 1563-1569
                                                               [8]   FURUKAWA H,  CORDOVA K  E, O’KEEFFE M,  et al. The
                                                                   chemistry and applications of metal-organic frameworks[J]. Science,
                                                                   2013, 341: 1230444.
                                                               [9]   HE Y P, TAN Y X, ZHANG J. Functional metal-organic frameworks
                                                                   constructed from triphenylamine-based polycarboxylate ligands[J].
                                                                   Coordination Chemistry Reviews, 2020, 420: 213354.
                                                               [10]  SIKMA R E, BALTO  K P, FIGUEROA J S,  et al. Metal-organic
                                                                   frameworks with low-valent metal nodes[J]. Angewandte Chemie

                                                                   International Edition, 2022, 61: e202206353.
             图 15  MOF-505 对 BT、DBT 和 4,6-DMDBT 的脱硫率           [11]  ZHAO D, YU K, HAN X, et al. Recent progress on porous MOFs for
            Fig. 15    Removal rate of  BT, DBT and 4,6-DMDBT by   process-efficient  hydrocarbon separation, luminescent sensing, and
                    MOF-505                                        information encryption[J]. Chemical  Communications, 2022, 58:
                                                                   747-770.
                                                               [12]  CHEN K, WU C D. Designed fabrication of biomimetic metal-organic
            3   结论                                                 frameworks for catalytic applications[J]. Coordination  Chemistry
                                                                   Review, 2019, 378: 445-465.
                                                               [13]  SHI Y S (史雨生), SONG J X (宋靖修), ZHANG T X  (张铁欣),
                 通过 XRD、FTIR、SEM、XPS、BET 和孔径分
                                                                   et al. Preparation of magnesium-triphenylamine based metal organic
            析,可以看出 MOF-505 催化剂在经过活化、催化处                            framework and its synergistic Lewis acid and photoredox catalysis[J].
                                                                   Fine Chemicals (精细化工), 2021, 38(8): 1635-1643.
            理前后的外观形貌和整体框架结构保持不变,只有                             [14]  YE G, QI H, LI X, et al. Enhancement of oxidative desulfurization
            部分催化剂内部孔洞出现缺陷导致孔径增大,说明                                 performance over UiO-66(Zr) by titanium ion exchange[J].
                                                                   ChemPhysChem, 2017, 18(14): 1903-1908.
            MOF-505 具有较好的稳定性。                                  [15]  HARUNA A, MERICAN Z M A, MUSA S G. Recent advances in
                 MOF-505 的金属活性位点和合适的孔洞大小等                          catalytic oxidative desulfurization of fuel oil-A review[J]. Journal of
                                                                   Industrial and Engineering Chemistry, 2022, 112: 20-36.
            特点使其可作为氧化脱硫的催化剂,经过模拟油萃                             [16]  PISCOPO C G, GRANADEIRO C M, BALULA S S, et al. Metal-
            取催化条件的优化,MOF-505 对 DBT 脱硫率高达                           organic framework-based catalysts for oxidative desulfurization[J].
                                                                   ChemCatChem, 2020, 12(19): 4721-4731.
            95.50%,而且可在保持高脱硫率的前提下多次重复                          [17]  BHADRA  B N,  JHUNG S H. Oxidative desulfurization and
            使用。同时,MOF-505 对燃油中其他噻吩类成分,                             denitrogenation of fuels using metal-organic framework-based/derived
                                                                   catalysts[J]. Applied Catalysis B: Environmental, 2019, 259: 118021.
            如 BT 和 4,6-DMDBT 同样具有较好的脱硫效果。                      [18]  DING J W, WANG R. A new green system of HPW@MOFs catalyzed
                 目前,鲜有单纯铜基 MOFs 用于催化脱硫的报道,                         desulfurization using  O 2 as oxidant[J]. Chinese Chemical Letters,
                                                                   2016, 27(5): 655-658.
            MOF-505 合成方法简单、成本较低,而且能达到单纯                        [19]  LI S W, WANG W, ZHAO J S. Highly effective oxidative desulfurization
            锆基 MOFs 或钛基 MOFs 相当的脱硫效果             [16-17] 。同时,      with magnetic MOF supported W-MoO 3 catalyst under  oxygen as
                                                                   oxidant[J]. Applied Catalysis B: Environmental, 2020, 277: 119224.
            单纯MOFs催化剂具有更高的稳定性,避免复合MOFs                         [20]  LI S W, WANG W, ZHAO J S. Catalytic oxidation of DBT for ultra-
            催化剂活性成分易流失的弊端。因此,MOF-505 在含                            deep desulfurization under MoO 3 modified magnetic catalyst: The
                                                                   comparison influence on various morphologies of MoO 3[J]. Applied
            硫工业燃料的催化脱硫领域具有很好的应用前景。                                 Catalysis A: General, 2020, 602: 117671.
                                                               [21]  LI S W, ZHANG H Y, HAN T H, et al. A spinosus Fe 3O 4@MOF-
            参考文献:                                                  PMoW catalyst for the highly effective oxidative desulfurization
                                                                   under oxygen as oxidant[J]. Separation and Purification Technology,
            [1]   LIU X (刘璇), CUI Y N (崔颖娜),  YIN J M (尹静梅),  et al.   2021, 264: 118460.
                 Application of metal-organic frameworks materials in  adsorptive   [22]  WEI P, YANG Y, LI W, et al. Keggin-POM@rht-MOF-1 composite
                 desulfurization[J]. Chemical Industry and Engineering Progress (化  as heterogeneous catalysts towards ultra-deep  oxidative fuel
                 工进展), 2020, 39(8): 3163-3176.                     desulfurization[J]. Fuel, 2020, 274: 117834.
            [2]   WANG T H (王廷海), LI W T (李文涛), CHANG X X  (常晓昕),                            (下转第 1796 页)
   129   130   131   132   133   134   135   136   137   138   139